Virtual Platforms for Fast Memory Subsystem Exploration
Using gem5 and TLM2.0

Matthias Jung*,
MohammadSadegh Sadri†,
Norbert Wehn*

* Microelectronics System Design Research Group, University of Kaiserslautern, Erwin-Schroedinger-Strasse, 67663 Kaiserslautern, Germany
† Department of Electrical, Electronic and Information Engineering, University of Bologna 40136 Bologna, Italy

ABSTRACT
TLM2.0 based virtual platforms are well suited for fast simulation and exploration on system level. However, for the exploration of memory subsystems, cycle accurate (CA) core models are needed, which slow down the simulation tremendously. In this paper we propose a method to playback previously recorded memory traces from the gem5 simulator in a TLM2.0 based virtual platform, to preserve simulation speed, while keeping accuracy at the same level as with cycle accurate models.

KEYWORDS: Virtual Platform, TLM2, gem5, Memory

1 Introduction

TLM2.0 based virtual platforms allow us to estimate and optimise the performance and power for different applications quickly. However, for ARM cores there is a lack of free available models. The FastModels, distributed by ARM Ldt. are based on just-in-time-compilation of the code and they use the TLM blocking coding style. Thus they do not reflect a realistic timing behaviour and can only be used for software development. Cycle accurate simulations can be done with the commercial available ARM models from Carbon Design Systems together with their SoC Designer. However, they are shipped as binary libraries with limited flexibility. Therefore, we are using the only mature cycle accurate open source system simulator gem5 [BBB+11]. It is capable to simulate various ARM cores and can be adapted to our needs for the memory controller design space exploration (see Figure [†]).

The authors would like to thank Andreas Hansson (ARM) and Thomas Grass (BSC) for their support regarding gem5.
gem5 is the result of the incorporation of the memory system simulator GEMS [MSB+05] into the former full system simulator m5 [BDH+06]. gem5 is an event based simulator, programmed in the language C++. As depicted in Figure 1, gem5 has the ability to mount communication monitors between different components. These communication monitors record memory access traces and store them in compressed binary files using Google’s protocol buffer [Goo13]. A tracefile consist of packets with information about time, command and address, shown in Listing 1.

```protobuf
def Packet {
  required uint64 tick = 1;
  required uint32 cmd = 2;
  required uint64 addr = 3;
  required uint32 size = 4;
  optional uint32 flags = 5;
  optional uint64 id = 6;
}
```

Listing 1: Protobuf definition

3 TLM2.0 based Virtual Platform

To use this trace files in a TLM2.0 based virtual platform, we developed a trace player based on the approximately timed coding style. This trace player is interoperable and can be used in any TLM2.0 based virtual platform.

Figure 1 shows an example for such a platform created with Synopsys Platform Architect. This platform, presented in [JWWC13] and [JWB+13] is used for the design space exploration of the 3D-DRAM memory controller frontend. The backend part of the controller was already investigated in [WLBW12, WLBW13].
4 Conclusion

Based on our practical experiments, the proposed approach is more than 150x faster than near cycle-accurate simulations and only ten times slower than real-time. For instance a trace with the length of 4 seconds can be simulated in 40 seconds. Using this method we are able to perform a large number of simulations with different parameter values in a very fast way.

References

The trace player will be published on http://www.uni-kl.de/3d-dram