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Abstract—In recent years, designing Systems-on-Chip (SoCs)
with domain specific and customizable embedded processors
(ASIPs) has become standard practice. When compared with gen-
eral purpose processors on the one hand and dedicated hardwired
accelerators on the other hand, these processor cores provide new
trade-offs between flexibility, energy and performance. Since they
are intended to only run a restricted set of application-specific
programs this knowledge is often exploited to further optimize
the architecture resulting in weakly programmable IP cores.
Such weakly programmable systems raise new challenges for
hardware and software verification. The conventional separation
of hardware and software verification based on a generic and
well-defined instruction set is no longer sustainable. In this paper,
we present a case study applying formal property checking to
state-of-the-art designs of two weakly programmable IP blocks.
A methodology is presented which is oriented at the operations
of the ASIP rather than its instructions. As a by-product of our
methodology for hardware verification we formalize the software
restrictions exploited for optimization of the micro-architecture.
We show that an automatic compliance check is feasible which
certifies that the software complies with these restrictions. To our
best knowledge, this is the first time that functional correctness
of ASIP hardware and HW/SW compliance for a realistic design
was completely verified using a formal methodology.

I. INTRODUCTION

The use of domain specific and customizable embedded

processors has become standard practice in designing com-

plex Systems-on-Chip ([15], [21]). These processors allow

for smooth trade-offs of implementation flexibility (in terms

of software programmability) against hardware performance

(throughput, energy, area). Application specific instructions

offered by these processors (denoted as ASIPs) can close the

performance gap between traditional processors and dedicated

hardwired solutions and improve its energy efficiency. ASIPs

offer the benefit of removing application-specific performance

bottlenecks by the use of new instructions specific to the

application and the adaptation of the datapath pipeline to these

new instructions. Some of these ASIP approaches assume a

fixed architectural template, e. g., a 5-stage RISC pipeline [2],

[24], in which the hardware for the new instructions has

to be embedded, others impose no restrictions at all on the

pipeline [10] and, thus, give the designer full flexibility in the

ASIP design space.

One extreme case within this design space is to remove

all flexibility, and thus overhead, in the processor that is not

needed by the application and adapting wordsizes, arithmetics,

memory hierarchies etc. completely to the needs of the appli-

cation which yields best performance and energy efficiency.

ASIPs designed in this manner share hardly any character-

istic of classical RISC pipelines and can rather be consid-

ered as application specific building blocks enhanced with

programmability. To emphasize this property these special

processors are also called weakly programmable IP (WPIP).

The design methodology of such processors differs from the

traditional top-down ASIP design which starts at C-Code level,

performing profiling etc. Instead this approach has a strong

emphasis on micro-architecture issues in the datapath pipeline.

In this paper, we consider two challenging ASIPs belonging

to this class of weakly programmable IPs. These ASIPs are

designed for the outer modem in software defined radio

architectures for 3G and 4G wireless applications. The ASIPs

were modelled and designed with the ProcessorDesigner tool

set from Coware Inc [10]. This tool set provides full flex-

ibility in the ASIP design space imposing no restrictions on

the datapath pipeline and memory structure. The cores are

used as case studies to evaluate the applicability of formal

property checking on highly optimized designs of weakly

programmable IP blocks.

Verification of weakly programmable IPs raises a number of

new problems and challenges. Since the processor is no longer

a pre-verified standard component of the system, and since

its architecture and instruction set are perpetually modified

during the design process, verification of the ASIP hardware

and its software interface consume a great share of the overall

design time. Moreover, due to the nature of the ASIP design

process, small manual changes to the configuration can have a

large impact on the resulting architecture and the probability

of introducing errors is high.

Currently, verification of ASIPs is carried out using hard-

ware/software (HW/SW) co-simulation [13], [16]. However,

simulation can be very time-consuming and, in some cases,

may easily miss bugs. For example, when compared with

standard RISC architectures, performance considerations often

suggest the use of longer pipelines in ASIPs. The low control-

lability of the higher pipeline stages makes bug identification

by simulation very difficult. Other difficulties result from

complex and manifold interactions between a large number

of operations as implemented in advanced ASIP pipelines for

signal processing applications.

For a reliable proof of functional correctness a methodology
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based on formal property checking with a high degree of

automation is desirable, as it has become standard practice

in the design of ASICs and GPPs [5], [7], [23], [27]. Today,

state-of-the-art commercial property checkers can completely

verify hardware designs with millions of gates. Such tools have

become standard components of industrial design flows.

ASIP design, however, raises significant new challenges for

formal verification. Conventional formal verification method-

ologies for GPPs are typically based on a set of properties

which constitute so called refinement relations on the abstract

ISA model. For weakly programmable IPs, however, there is

no such ISA model. Instructions are implicitely defined by a

sequence of operations that can be configured in numerous

ways. A single instruction may subsume the behavior of

hundreds of classical RISC instructions and, moreover, may

depend on the actual configuration of the datapath.

In a conventional HW/SW-system based on GPPs, the

software can be verified independently of the hardware. There

has been significant progress in formally verifying low-level

software, e.g., by the work of [4], [8], [11], [14]. However,

note that the conventional separation of hardware and software

verification always relies on a a clean programming model as

provided by a well-defined instruction set architecture. For

weakly programmable IP blocks, however, a clean ISA model

is often not available. This imposes new problems and makes

it necessary to ensure that the combined system including

software and hardware meets its specification.

In [17] an approach to formal property checking for a

combined model including software and hardware is proposed.

However, this approach requires verification models for both

software and hardware to be set up manually. These models

are then handled by symbolic verification techniques with the

usual restrictions regarding the size of the systems that can be

managed. Also, the SAT-based approach proposed in [12] is

limited to fairly small programs as it does not abstract from

the implementation details of the underlying hardware.

To the best of our knowledge, there is currently no automatic

formal verification method available using both, HDL models

for the hardware components and C or assembler programs

for the software.

In this paper, we present a new methodology based on state-

of-the-art (hardware-) property checking and demonstrate its

benefit by conducting a case study on the two aforementioned

weakly programmable ASIPs. Our methodology addresses

the above challenges. In the absence of an ISA-model, the

proposed methodology is oriented at the individual operations

of the ASIP rather than at its instruction set. We propose

a specific style for writing properties which separates the

correctness proof for the individual operations and verifying

their interplay within instructions. Our methodology results

in property checking problems which are within the capacity

limits of modern property checkers. As a by-product, our

methodology provides restrictions regarding the software to

be executed on the ASIP. Often such restrictions are accepted

during the design-process as they allow the designer to further

optimize the microarchitecture with respect to power and

performance. This has motivated us to propose an extension

to the conventional model checking technology where such

restrictions are captured by an abstracted design model. In the

described case study we demonstrate the benefit that can be

obtained from this extension.

II. ASIP DESIGN

In this section we provide some background on the ASIP

design. One of our case studies is used in the remainder of the

paper to explain and motivate the proposed methodology for

weakly programmable IP (WPIP) verification. We start with a

brief overview of 3G and 4G wireless communication systems

in order to demonstrate what requirements our design has to

fulfill. Then, we present the instruction set and the structure

of the pipeline of the WPIP.

3G and 4G wireless communication systems comprise ad-

vanced signal processing algorithms that increase the compu-

tational complexity by some orders of magnitude compared

to 2G systems. Furthermore, numerous existing and emerging

standards require flexible implementations (software defined

radio). Hence, some of the signal processing tasks in baseband

systems of 3G and 4G communication systems are ideal

candidates for WPIP implementations [3], especially channel

decoding which is an essential part in the outer modem.

Channel coding allows the correction of errors which were

induced during the wireless transmission of the signal due to

noise. Decoding algorithms used in 3G and 4G are complex

iterative algorithms which have no standard signal processing

characteristic. Moreover, they use non-standard arithmetics

and wordsizes. The various coding parameters and decoding

algorithms used in the different standards require a certain

flexibility which can not be fulfilled by a hardwired dedicated

IP block. Hence channel decoding is a very good candidate

for WPIP. Turbo Codes [6] belong to the most efficient

channel coding techniques. However, the decoding process

is very complex which leads to a high computational effort

and large internal data bandwidth. The throughput of Turbo

Code decoder implementations on standard DSP processors

is at least one order of magnitude less than the 3G throughput

requirements.

A WPIP for execution of the so called maximum a posteriori

algorithm (MAP) [20], [22] was designed. This algorithm is

fundamental in Turbo-Code decoding and is also necessary for

soft-output decoding of traditional convolutional codes.

The MAP algorithm consists of several loops processing

a large data block in a recursive manner in forward and

backward direction, respectively. A block can consist of up

to 20,000 bits in UMTS. The loop bodies contain some very

complex non-standard arithmetic computations. The resulting

data path consists of 10 pipeline stages (see Figure 1). Only the

fetch (FE) and decode (pipeline DC) stages are common to a

traditional RISC pipeline. All the other stages are very specific

in order to efficiently perform the individual computations or

allowing efficient data access in the MAP loops.

The instruction set comprises dedicated instructions to per-

form so-called state metric calculations (executed in pipe-

line stage EX1), so-called forward and backward recursion

(executed in pipeline stage EX2), and so called log-likelihood

calculations (performed in pipeline stages EX3 and EX4). In
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Fig. 1. Dedicated Pipeline of the MAP decoder ASIP

addition, the data path contains special stages for efficient

memory access (pipeline stages ADR, LD, LD2). The pipeline

is fully optimized for efficient MAP decoding and has a limited

programmability compared to a standard RISC pipeline. Thus,

this core is a weakly programmable IP block. A complete

list of the instruction set is summarized in Table I. Each

of the instructions listed in this table is far more complex

than a conventional RISC instruction. This ASIP is used as

fast coprocessor in a wireless modem architecture. Hence, the

instruction set does not offer any software defined control

instructions. Such an instruction set is typical for WPIPs. The

software for a WPIP is written on assembler level to fully

exploit the datapath capabilities.

Instr. Functionality

SMFW State metric (SM) recursion forwards

SMBW State metric (SM) recursion backwards

LLRFW Log-Likelihood recursion forwards

LLRBW Log-likelihood recursion backwards

AQBW Acquisition backwards

SADR Set source address

DADR Set destination address

SSM0 Initialize state-metric pipeline registers

SM IO Load/Store operation on the SM memory

ST A Store state-metrics from previous instruction

SMOD Set the code rate

TABLE I
INSTRUCTION-SET OF THE EXAMINED ASIP

Both WPIPs considered within this paper outperform state-

of-the-art DSP implementations for the same application by an

order of magnitude in throughput for the decoding algorithms

and require substantially less area and energy. [22], [25], [26].

III. FORMAL PROPERTY CHECKING

In this section, we outline a general verification method-

ology for ASIP verification based on property checking. We

adapt state-of-the-art formal verification techniques to meet

the specific requirements of weakly programmable IP (WPIP)

designs. Our overall goal is to ensure their functional cor-

rectness. In our methodology, this global task is decomposed

by the individual instructions and their operations. From the

correct functionality of the operations and the correct interplay

of the operations considered in each instruction, we conclude

functional correctness of the overall design.

Our case study is based on a formal verification technique

called interval property checking which, in its early versions,

was developed at Siemens around the mid 90s. A modern SoC

verification environment based on interval property checking

is now commercially available by [19].

Interval property checking is a variant of SAT-based prop-

erty checking and can prove certain temporal logic formulas

over the signals of a design. This can be formalized as follows.

(We assume that the reader is familiar with standard notions

of CTL model checking [9]). Interval properties are CTL* [9]

properties of type AG (p), so called safety properties, where p

only refers to signals of the design within a bounded interval

of time, e.g., p can be considered as a Boolean formula

over timed signals X
t(s) which are obtained by applying the

generalized X operator to design signals s, with X
0(s) = s

and X
t(s) = X X

t−1(s) for t > 0. Such an expression

p is denoted as timed boolean expression throughout this

paper. Let tf , tl denote the minimum and maximum t used

as exponent for the generalized X operator within a timed

boolean expression. The time interval [tf , tl] will be called

inspection-interval of a timed boolean expression p and its

corresponding interval property AG (p) in the sequel.

Although the set of interval properties is a far less expressive

subset of CTL* than other classical temporal logics such as

CTL or LTL it has gained significant attention in industrial

applications. Interval properties can express the behavior of a

design at the register-transfer level in a natural way. Moreover,

they can be verified by SAT solving for which highly efficient

tools are available. The SAT formulation is based on an

iterative circuit model as depicted in Figure 2. Several copies

of the transition function are concatenated to generate a

combinational model of the circuit under verification.

Fig. 2. Iterative circuit model of four time frames

In this model each copy of the transition function is called a

time frame. Given the inspection-interval [tf , tl] of an interval

property AG (p) an iterative circuit model of length tl is

conjoined with the boolean expression for p. Finally, a SAT

solver is called to check whether the resulting boolean formula

is a tautology. In this case, the property AG (p) is proven.

However, if the SAT-solver generates a counterexample the

user has to examine whether or not the values generated for

the state variables s0 in the first time frame correspond to

a reachable state in the original design. If they do not, the

counterexample is called spurious and we speak of a false

negative. Otherwise, the property is proven to be wrong.

Fortunately, as a result of the practical verification method-

ology false negatives do not occur as frequently as it might be

expected. Industrial experience shows that they often can be

eliminated in an easy way by constraining the state variables

at timepoint t = 0 by invariants, i.e., the property AG ((s0 ∈

I) → p) is proven for a sufficient invariant I . Our intuition

explaining this observation is that designers never exactly

calculate the reachable states of their overall design and

therefore design robustly with respect to global reachability

issues. Invariants are state sets which are closed under the
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image of the transition function and can therefore be proven

inductively by the interval properties AG (reset → X (s ∈ I))
and AG (s ∈ I → X (s ∈ I)).

Industrial CAD vendors have made a lot of efforts to

provide additional language features to support an intuitive

specification of interval properties. For example, Table II and

Table III show a property that specifies the result of an addition

instruction in a simple processor using the property language

of the industrial property checker Onespin 360 MV [19]

and Accellera’s PSL (Property Specification Language) [1],

respectively. Both properties state that the result of an addi-

tion instruction is stored in the result register of the integer

pipeline, exactly four clock cycles after the instruction has

been decoded.

property ADD is
assume:

during [t, t+4]: not reset ;

at t: opcode fetch reg[10..13] = “0101” ;
prove:

at t+4: result reg = prev(opnd A,3) + prev(opnd B,3);
end property;

TABLE II
EXAMPLE OF AN INTERVAL PROPERTY

property ADD is
always
- - assume part

next a[0..4](!reset) &&
(opcode fetch reg[10..13] == “0101”)

− >

- - prove part
( next[4] (result reg )== opnd A + opnd B)

- - end property
;

TABLE III
EXAMPLE PROPERTY IN PSL

In these languages during[t,t+4]:a and next a[0..4]a, re-

spectively, are shortcuts for the timed Boolean expression

4∧

t=0

X
t(a).

Note, that we may also refer to the past using the tempo-

ral operation prev. With the relationship X
t(prev(x, t))=x,

however, it is always possible to eliminate the prev operation

from the property. Both examples show the typical structure of

interval properties. Properties consist of two main parts. The

first part will be called assumption in the sequel and describes

conditions about the design state and the behavior of the

environment within the inspection-interval. The second part is

denoted as commitment and describes the expected behavior

of the design under the assumption. This property structure

enables the verification engineer to focus on certain aspects

of the design in an abstract way. As a result, the selected

behaviors can be defined in a simple and compact form so that

the resulting properties are easy to review and maintain. By

specific methodologies industrial practitioners ensure that the

overall property set completely covers the intended behavior

of the design. Throughout this paper, we use a pseudocode

notation for properties that is close to the Onespin property

language. For reasons of space we omit the discussion of the

formal semantics of this notation here.

When interval property checking is applied to the design

of a general purpose processor the instruction set represents

a natural dimension for decomposing the verification task

into a set of scenarios. The individual instructions can be

executed independently of each other as long as there are no

data or control dependencies between them. This results in a

methodology where properties are written for each instruction

by specifying the effects on the registers that are visible to

the programmer and by specifying the effects on the external

busses of the WPIP. Table II, as already discussed above, is

an example for such a property.

Instructions of WPIPs are far more complex than typical

GPP instructions. Moreover, WPIPs allow for reconfiguration

of the pipeline via dedicated configuration registers or mem-

ory. In this case, instructions of the WPIP may exhibit different

behaviors depending on the actual configuration. In order to

cope with this situation we split an instruction into individual

operations. As an operation we consider a certain sub-function

of an instruction that is executed within one specific pipeline

stage of the design. Note that this corresponds to the design

process of modern ASIP design environments such as the Co-

Ware Processor Designer [18].

In the following, we will sketch how properties are set up

for the instructions and operations of a WPIP. We proceed in

a top-down manner where we start with properties describing

each instruction as a whole. Then, this needs to be refined

by specifying the detailed behavior of each instruction as a

sequence of operations.

Table IV shows the pseudo-code of a property tem-

plate used for verifying that the WPIP design cor-

rectly implements its instructions. The template is instan-

tiated and customized for every instruction of the ASIP.

In this property instrXYZ fetched(),instrXYZ constraint() and

property instrXYZ is
assume:

during [t, t finished]: no reset ;

at t: instrXYZ fetched();
at t: instrXYZ constraint();

prove:

at t+1: instrXYZ performed();
end property;

TABLE IV
PROPERTY TEMPLATE FOR INSTRUCTION SET VERIFICATION

instrXYZ performed() denote timed Boolean expressions. The

property states that whenever the instruction XYZ is fetched

at time t this instruction will be correctly performed starting

in the next clock cycle. If certain assumptions must be made

about the design state or its environment it is enforced by the

template that the verification engineer explicitely formulates

all needed assumptions in a timed Boolean expression denoted

instrXYZ constraint(). In highly optimized microarchitectures

it is possible that fairly complex assumptions have to be

made under which an instruction can operate. Note that these

assumptions are not only important to describe the possible
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hardware behaviors, they also represent restrictions for the

software that will be executed on this hardware. In the next

section, we will outline how these constraints can be re-used to

prove that a piece of software targeted to the WPIP complies

with the specified restrictions.

When verifying the complete instruction set of a processor

the property template of Table IV has to be instantiated for

each instruction provided by the hardware. This step can

be partially automated. For example, the instrXYZ fetched()

macros can be automatically generated using the list of op-

codes exported from the ASIP design tool.

Instead of referring to the data sheet of an abstract ISA-

model – which is not available for WPIPs – the detailed behav-

ior of an instruction is defined by a sequence of operations. In

the following, we show how the specification of an instruction

is broken down into individual operations performed by the

pipeline. Consider the following timed expression specifying

the execution of a backward recursion for state metric calcu-

lation by the ASIP presented in the previous section:

SMBW performed():= decrOffsetSM() ∧ decrSrcAdr()
∧ loadCV() ∧ calculateSMBW() ∧ doSMIO)()

∧ decideZeroOverHeadLoop()

In this example, the SMBW instruction is broken down into

six operations:

• decrOffsetSM(): decrement the address of the state metric

register file.

• decrSrcAdr(): decrement the source address for the next

state metric calculation.

• loadCV(): load the so called channel values from the

address specified by decrSrcAdr() with respect to the

selected coderate.

• calculateSMBW(): calculate the 8 state metrics for the

loaded channel values using backward traversal. This

includes the calculation of the branch metrics in a first

step. For the calculation of these 8 state metrics 21

additions and 8 minimum selections on 12 bit words are

performed in this operation.

• doSMIO(): store the calculated state metrics at the mem-

ory address calculated in decrOffsetSM().

• decideZeroOverHeadLoop(): The SMBW instruction is

usually performed several times. For a more efficient

implementation a zero overhead loop is executing the

instruction for a specified number of iterations. Except

for the last iteration of this zero overhead loop the PC is

not incremented and the number of iterations that have

to be performed is decremented instead.

Breaking down an instruction into several operations has

another beneficial aspect. The specifications for the individ-

ual operations can be re-used for several instructions. This

greatly reduces the verification effort required to completely

verify all instructions of the ASIP. Moreover, if the property

checker runs into complexity problems a property can easily

be decomposed into two properties, each checking a subset of

operations. Since all operations are linked by the assumptions

and commitments of the properties in a systematic way no

verification gap arises from such a decomposition.

IV. ASSEMBLER CODE COMPLIANCE

In the previous section, we have outlined a structured

methodology for the specification of a property set that

completely verifies the functional correctness of the WPIP

hardware. As a by-product of this verification effort a set

of constraints has been created that needs to be met by the

environment if the design shall function correctly.

In this section, we will outline a fully automatic method to

check that software targeted to the WPIP complies with these

environment constraints. The set of environment constraints

instrXYZ constraint() is denoted by C in the remainder of this

paper.

The key idea of the compliance check is to validate whether

or not the constraints are valid on every path through the

control flow graph of the software. We model the assembler

program by its control flow graph P = (I, E, i0) where I

denotes the set of instructions, E ⊂ I2 denotes the successor

relation between instructions and i0 denotes the first instruc-

tion of of the program.

For every constraint in C we know the inspection-interval

[t − a, t + b] in which other instructions can depend on the

investigated instruction at time t. The size of this interval will

be called dependency depth of instruction XYZ .

For every instruction i ∈ I used in the program under

consideration, we determine the constraint ci ∈ C and its

inspection-interval [t − a, t + b]. We need to prove that the

constraint ci is valid on all paths

it−a, . . . , it = i, . . . , it+b

in the control flow graph P .

This proof is carried out using the property depicted in

Table V. It states that the instructions along the path in

the control flow graph comply with the constraint for i. In

practice these checks are feasible as the dependency depth of

instructions is proportional to the pipeline depth and therefore

the number of possible paths to be enumerated remains small.

Recall that WPIPs are mainly used for computation rather than

control intensive tasks.

property instr(i)Complies;
assume:

at t-a: instr(it−a) fetched();
at t-a+1: instr(it+1−a) fetched();
. . .

at t+b: instr(it+b) fetched();
prove:

at t: instr(i) constraint();
end property;

TABLE V
PROPERTY FOR HW/SW COMPLIANCE OF A SINGLE INSTRUCTION

The efficiency of the compliance check introduced in this

section can be further extended by the application of abstrac-

tion and black-boxing techniques.

For example, consider the common case that the constraints

identified during formal property checking are timed Boolean

expressions over the instrXYZ fetched() expressions. Note

that these expressions usually compare an internal register of
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the design with a specific value representing the opcode. An

example for this is taken from our case study:

SMBW fetched() := (instr fetch reg == ”0111” ).

In such a case, the property sketched in Table V can be

proven using an abstract model of the design that only consists

of the register instr fetch reg. In our experience, an initial

abstraction including only the registers used in the above

property can be quickly refined towards an abstraction which is

sufficient for an efficient compliance check. Usually only a few

refinement steps of including logic in the fanin of the registers

are required. Such abstractions can be generated automatically

and make HW/SW compliance checking tractable even for

large designs.

V. EXPERIMENTS

For the experimental evaluation of the proposed methodol-

ogy we formally verified two state-of-the-art designs which

implement algorithms for channel decoding. The first design,

MAP, implements a MAP decoder and has been described

in Section II. The second design, FlexiTrep, is even more

complex than MAP, and provides instructions to support mul-

tiple channel decoding algorithms. It consists of 15 pipeline

stages, a sophisticated distributed memory architecture within

the pipeline stages and a dynamically reconfigurable channel

code control unit which supports multi-context instructions,

fast context switches between different codes and efficient

operand management. Detailed information about FlexiTrep

can be found in [26].

The verification methodology proposed in this paper has

been applied to both designs. Specifically, the functionality of

MAP was covered by 28 properties which were set up based on

the templates presented in the previous section. The proof of

the entire property set takes a total CPU-time of 67 s. Most of

this time is spent in the verification of the combined recursive

state metric calculation and the log-likelihood calculation. All

other operations have been verified in less than 1 s of CPU-

time. All experiments were conducted using the industrial

property checker Onespin 360 MV[19]. The machine for the

experiments was running SUSE Linux 10.1. on an Intel dual

core CPU with 2GB RAM.

The FlexiTrep WPIP design features 38 instructions to sup-

port software implementations of multiple channel decoding

algorithms. Some of the instructions perform operations in

all of the 15 pipeline stages. Such instructions correspond to

hundreds of RISC instructions. For complexity reasons, some

of the properties verifying the most complex instructions had

to be split in up to three properties. The final property set

therefore consists of 42 properties.

The verification of the entire property set takes about 100

minutes of CPU-time. The time required for the individual

properties ranges from a few seconds for simple initialization

instructions up to 20 minutes for some of the instructions

performing state metric calculations.

Note that the CPU-times required for formal verification

of the complete property sets are competitive even when

compared with simulation-based verification.

Both WPIPs have been simulated intensively using the

debugger of the ASIP design tool and had been signed off for

industrial application. Yet, in both cases serious bugs could be

identified after applying our formal methodology.

In the MAP design, two bugs were identified that were

caused by inconsistent bit widths. Two eight bit numbers had

to be added into a nine bit result. The generated hardware

performs an eight bit addition and sign extends the result af-

terwards instead of first extending the operands and performing

the addition on the extended operands.

For the FlexiTrep design we were able to show that the

saturation operation located in pipeline stage 14 did not work

correctly under certain conditions on the operands. More

precisely, for numbers smaller than -64, two out of three

saturation units checked a wrong saturation condition. During

the intensive sign-off simulations this bug was missed as it

only occurs in very rare cases and can only be observed at the

end of the pipeline. Due to the limited controllability of deep

pipeline stages it is hard to force a simulator into such corner

cases.

Another bug identified by property checking turned out to

be caused by a late code change where the designer forgot

to remove a specific value assignment to a control signal.

The value of this signal was now calculated twice causing

a race condition in the generated RTL code. In the design

environment, however, this race condition had not been visible.

In a second step, for both designs the compliance of the

software with the developed hardware has been checked using

the method described in Section IV.

Within the MAP design certain power optimizations caused

a data dependency between the instructions for forward and

backward calculations. It was deliberately left to the software

developer to solve the resulting hazards by inserting NOP

instructions between the code fragments working in different

directions. The compliance checker disclosed, however, that

this rule had not always been obeyed within the tested soft-

ware. More precisely, we tested eight programs differing in the

direction of calculation and the number of bits to be processed.

It turned out that three out of four programs starting with the

backward calculation failed the compliance check.

By contrast, the FlexiTrep WPIP offers a stall unit to cope

with such problems. Therefore, the programmer is relieved

from taking care of dependencies between instructions. Never-

theless, also here the compliance check proved quite beneficial.

We set up a verification experiment where we assumed that

the stall unit is deactivated and we attempted to prove HW/SW

compliance under this condition. Not surprisingly, counterex-

amples were generated. The compliance checker explicitely

pinpoints the individual instructions of the assembler code

that cause the problem and visualizes the instructions involved

in the conflict. This provides the software engineer with

valuable information when manually optimizing his code. With

a few modifications of the software, e.g., adding NOPs at

these positions, the conflicts could be removed. Moreover, we

identified two programs where the compliance checker has

proven that no stalls will ever happen and thus the stall unit

could be turned off.

The results of the compliance checks are summarized in
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Table VI. The table is organized as follows. The first two

columns show the name of the program and the number

of instructions to be analyzed by the compliance checker.

The CPU-time and the result of the compliance checks are

indicated in columns three and four.

Program #Instr CPU-time Result

fw 287 221 1.54 s Fails
fw 288 1 230 1.42 s Holds
fw 288 2 221 1.48 s Fails
fw 289 236 1.54 s Fails
bw 287 225 1.31 s Holds
bw 288 225 1.33 s Holds
bw 289 245 1.35 s Holds

DuoBinary AP 42 2.34 s Holds
DuoBinaryS16 AP 43 2.3 s Holds
RSC NT IL 99 3.94 s Fails
RSC relSMA 302 10.9 s Fails
VA 133 99 3.86 s Fails
VA 23 fast 61 2.63 s Fails
VA 557 289 10.38 s Fails
VA RSC 133 91 3.55 s Fails

TABLE VI
REQUIRED TIMES FOR THE COMPLIANCE CHECK

VI. CONCLUSION

This paper presents a formal verification methodology

which adapts property checking to the specific requirements

of weakly programmable IP (WPIP) designs. As a by-product

of the steps taken to verify the hardware we obtain a formal

specification for the restrictions that the software must comply

with when running on this WPIP. We demonstrate that com-

plete functional hardware verification of the WPIP as well as a

fully automatic compliance check for the software is feasible

by making only small extensions to a state-of-the-art formal

property checker.
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