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Abstract— Turbo-Codes are part of the third generation wireless
communications system (UMTS). A Turbo-Decoder consists of two soft-in
soft-out component decoders, which exchange information (soft-values)
in an iterative process. The number of iterations for decoding strongly
depends on the channel characteristic which can change from block to
block due to fading. In this paper, we present two new stopping criteria
which can be implemented on dedicated hardware or DSP with negligible
overhead. The new criteria operate on the sum of the absolute soft
output values, calculated after each component decoder and is referred
to as sum reliability. We compare the communications performance and
average number of iterations of our proposed criteria to other criteria in
literature using a fixed-point 8-state Turbo-Decoder implementation in
an UMTS FDD-Downlink chain. An analysis of the arithmetic complexity
and memory demand yields minimal overhead with excellent performance
compared to other stopping criteria.

I. INTRODUCTION

The outstanding forward error correction provided by Turbo-
Codes, which were introduced in 1993 [1], made them part of
today’s communication standards, e.g. UMTS [2]. They consist of
concatenated component codes that work on the same block of
information bits, separated by interleavers. Key to the performance
of Turbo-Codes is the iterative exchange of interleaved information
between the component decoders. The iterative nature of the decoding
process yields a high computational complexity. The design metrics
latency and energy consumption increase linearly with the number of
decoding iterations. On the other hand the decoder has to perform a
certain number of iterations before reaching a satisfactory degree of
confidence. The number of iterations for decoding strongly depends
on the channel characteristic, which can change from block to block
due to fading. In some cases, successful decoding is impossible
even with an infinite number of iterations. Therefore, selecting an
appropriate value for the number of iterations requires a trade-
off between decoding performance and implementation complexity.
Standard Turbo-Decoders are implemented with a fixed number of
iterations (typically between 5 to 10 iterations).

We propose to use an iteration control criterion with a variable
number of iterations. For each datablock, the number of iterations
performed is determined by the number of passes before a certain
condition or rule for stopping is satisfied. The stopping condition
determines, whether a datablock is already successfully decoded or
if the datablock is to disturbed to be decoded error free at all. It is
computed based on information available during decoding. At the end
of each iteration, the decoder performs a check on the condition for
stopping. If the condition is true, the iterative process is terminated,
and the decoded data sequence is send to the decoder’s output.
Otherwise the iterative process continues.

Research on iteration control criteria (see Section III) has focused
on detecting convergence, i.e. successful decoding. The resulting
criteria are able to reduce the average number of iterations for im-
proved channel characteristics (i.e. a high SNR region). We argue, that
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iteration control criteria should also consider undecodable datablocks.
For low SNR with a fair amount of undecodable datablocks high
effort is wasted by the decoder, as the maximum number of iterations
is carried out. Detecting undecodable datablocks early in the decoding
process would allow to reduce the average number of iterations over
all channel characteristics.

Efficient iteration control for both scenarios - successful and
unsuccessful decoding - is important for efficient Turbo-Decoder
implementations. It will reduce decoding delay and can be exploited
in several ways:

• low power/low energy operation by shutting down idle blocks
or by voltage scheduling techniques [3], [4],

• throughput increase by starting decoding of the next block earlier
[5],

• decoding performance improvement by spending more iterations
on blocks that are expected to be decodable with more iterations
than a previously used fixed number of iterations [6].

Of course the benefits have to offset the time and energy spend on
iteration control. The stopping rule of a iteration control criteria
should be computable easily from data available during normal
decoding operation.

In this paper we present new stopping criteria and compare these
to other criteria in literature using a fixed-point 8-state Turbo-
Decoder implementation regarding three aspects: the communications
performance has to fulfill the requirements of the UMTS standard,
the number of normalized iterations has to be as small as possible
and an implementation complexity with negligible overhead.

II. SYSTEM MODEL

Channel coding in general enables error correction in the re-
ceiver side by introducing redundancy (e.g. parity information) in
the encoder. In Turbo-Codes, the original information, denoted as
systematic information (~xs), is transmitted together with the parity
information (~x1p,~x2p

int ). For UMTS [2], the Turbo-Encoder consists
of two recursive systematic convolutional (RSC) encoders with
constraint length Kc = 4. Both encoder work on the same block of
information bits; for UMTS the blocklength (K) is in the range from
40 to 5114.

One RSC encoder works on the block of information in its original
sequence. The second encoder has the same structure but works on
the original data in a different order (an interleaved sequence). In a
puncturing unit the code rate Rc can be adjusted.

The Turbo-Decoder receives three sequences of logarithmic like-
lihood ratios (LLRs) Λs

k, Λ1p
k , and Λ2p

k,int according to ~xs,~x1p,~x2p
int .

For every RSC encoder a corresponding component decoder exists,
see Figure 1. Decoding is an iterative process with the exchange of
reliability information. In every iteration each decoder calculates for
every received bit a LLR as soft-output (reliability information). The
soft-output of each component decoder (~Λ) is modified to reflect only
its own confidence (~Λe) in the received information bit. The sign of
each LLR indicates the received information bit of being sent either
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Fig. 1. Turbo-Decoder

as “0” or “1”, the absolute values are measures of confidence in the
respective 0/1-decision. The maximum a posteriori (MAP) decoder
has been recognized as the component decoder of choice as it is
superior to the Soft-Output Viterbi Algorithm (SOVA) in terms of
communications performance and implementation scalability [7]. The
first MAP-Decoder (MAP1) works on the received bits in the original
sequence, the second decoder (MAP2) works on the received bits
in the interleaved order. In Figure 1 interleaving and deinterleaving
is performed by the blocks IL and DIL respectively. The exchange
continues until a stop criterion is fulfilled. The last soft-output is not
modified and becomes the soft-output of the Turbo-Decoder (~Λ2).

For the following investigations, we used a simulation model
implemented in Synopsys CoCentric System Studio to simulate the
Turbo-Decoder performance. The used Turbo coding system complies
with the UMTS standard [2]. The encoder consists of two identical
RSC encoders with constraint length Kc = 4, Mc = 2Kc−1 = 8 states,
13/15 generator polynoms, and an UMTS-compliant interleaver. The
total code rate of the used Turbo-Encoder is Rc = 1

3 .
The Turbo-Decoder is implemented using fixed-point arithmetic.

The notation (q, f ) describes the fixed-point representation of a
number: q represents the total bitwidth of the fixed-point number,
f is the bitwidth of the fractional part. For the input signal ~Λs, ~Λ1p,
and ~Λ2p

int a (6,2) quantization scheme is used. From these input signals,
the branch metrics are calculated exactly. The calculation of the
state metrics is implemented with a (12,2) quantization and modulo
arithmetic [6] as a renormalization scheme to avoid overflows.
Finally, the extrinsic information ~Λ1e, ~Λ2e and the LLRs ~Λ1, ~Λ2

are implemented with a (7,2) quantization and saturation arithmetic.

III. RELATED WORK

Early iteration control criteria are based on the principle of cross
entropy minimization between the probability- or LLR distributions.
Hagenauer used in [8] a threshold value on the cross entropy
between the first and second component decoder’s soft outputs to
stop iterations. Shao et al. devised in [9] two more simple criteria
which are related to cross entropy minimization. Both are based
on monitoring the number of sign changes of the soft-output Λ2

and extrinsic information Λ2e respectively of subsequent iterations
and compare them to a threshold. A similar criterion was proposed
by Wu and Woerner in [10], there the number of different signs
between a priori and extrinsic information of one component decoder
is calculated and compared to a threshold.

Cyclic Redundancy Check (CRC) was employed in [11] to reduce
the average number of iterations. Transmitting the CRC slightly
decreases the rate Rc. Furthermore, the CRC polynomial has to be
chosen carefully, as the residual error rate of the CRC influences the
decoding performance.

Wang and Parhi proposed in [12] so-called decoding metrics,
comprising the minimum of the extrinsic information |Λ2e|, the
minimum of the soft-output |Λ2|, the number of non-matching signs
between extrinsic information and soft-output, and the comparison
of the number of decoded ‘1’ in datablock of successive iterations.
Matache et al. presented in [13] a thorough analysis of different
stopping rules for iteration control. They distinct between hard rules,
which are based on comparing decoded bits (hard bit decisions), and
soft rules, which are based on comparing reliabilities (soft-output)
with a threshold. Soft rules comprise among others of the mean and
the minimum of the soft-output |Λ2|.

We proposed in [6], [3] for the first time a criterion that can be
used to detect - with high reliability - both successfully decoded and
undecodable datablock within a reasonable number of iterations. We
calculate the mean absolute value µi (Equation 6) of iteration i and
monitor its value over the iterations. We observed that µi increases
from iteration to iteration as the decoding process is improving its
results. If the datablock has been decoded, or further iterations cannot
correct the remaining errors, µi saturates. Therefore we can use the
µi as an progress indicator of the decoding process. This criterion
was independently proposed in [13], [14], [15] and in [15] named as
mean-reliability.

IV. ITERATION CONTROL CRITERIA

In this section we define our proposed stopping rules for iteration
control: Sum-Reliability and Combined Minimum LLR and Sum-
Reliability. Furthermore, different stopping rules from literature are
described as references.

Some of the following rules use a threshold θ. This threshold is
rule dependant, even if the same symbol is used for all rules. In the
results presented in Section V the used value for θ will be explicitly
stated. The chosen thresholds were determined by simulation, with
the objective of covering a reasonable range of undetected frame-
error-rates for each rule.

A. New Iteration Control Criteria Definition

Sum-Reliability (Sum). We propose to calculate the sum-
reliability instead of the mean-reliability to avoid a costly division
operation. After each iteration i the sum of the absolute values of the
LLRs is calculated:

Si =
K

∑
k=1

|Λ2,i
k |. (1)

The decoding process is stopped after iteration i for i ≥ 2, if

Si −Si−1 ≤ 0. (2)

Combined Minimum LLR and Sum-Reliability (Comb). After
each iteration i the sum of the absolute values of the LLRs is
calculated as in Equation 1. The decoding process is stopped after
iteration i for i ≥ 2, if

Si −Si−1 ≤ 0 or min
1≤k≤K

|Λ2,i
k | > θ. (3)

The threshold θ = 7.75 used in our simulations was chosen as 1
2 of

the dynamic range of the LLRs’ absolute values.

B. Reference Iteration Control Criteria

Cross Entropy (CE). As presented in [8], the cross entropy can be
used to stop the iteration process. Based on the assumptions presented
in [16] the CE of the iteration i can be approximated by:

T (i) ≈
K

∑
k=1

(Λ2e,i
k −Λ2e,i−1

k )2

e|Λ
1,i
k |

. (4)



The decoding process is stopped after iteration i for i ≥ 2, if

T (i)
T (1)

< θ, (5)

where T (1) is the approximated CE after the first iteration.
Mean-Reliability (Mean). In this work, we refer to stopping the

iteration with the mean-reliability as described in [13] and similarly
presented in [14]. After each iteration i the mean of the absolute
values of the LLRs is calculated:

µi =
1
K

K

∑
k=1

|Λ2,i
k |. (6)

The decoding process is stopped after iteration i for i ≥ 1, if

µi > θ. (7)

Minimum LLR (Min). Stopping the iteration based on evaluating
the minimum LLR was described in [13], [12]. The decoding process
is stopped after iteration i for i ≥ 1, if

min
1≤k≤K

|Λ2,i
k | > θ. (8)

Sign-Change Ratio (SCR). The SCR criterion is related to cross
entropy as described in [16]. SCR evaluates a decision function f SCR

after each iteration i for all k ∈ {1 . . .K}, which evaluate the sign
change of the extrinsic information of successive iterations:

f SCR
i (k) =

{

0, if sign(Λ2e,i
k ) = sign(Λ2e,i−1

k )
1, else

. (9)

The decoding process is stopped after iteration i for i ≥ 2, if

1
K

K

∑
k=1

f SCR
i (k) < θ, (10)

where ∑ f SCR
i (k) corresponds with the number of sign changes

between Λ2e,i and Λ2e,i−1.
Sign-Difference Ratio (SDR). In [10] the SDR is calculated as the

number of different signs between a priori and extrinsic information
of one component decoder. SDR evaluates a decision function f SDR

after each iteration i for all k ∈ {1 . . .K}:

f SDR
i (k) =

{

0, if sign(Λ2a,i
k ) = sign(Λ2e,i

k )
1, else

. (11)

The decoding process is stopped after iteration i for i ≥ 1, if

1
K

K

∑
k=1

f SDR
i (k) < θ. (12)

Hard-Decision Aided (HDA). This criterion proposed by [16]
compares the decoded bits of two successive iterations. The decoding
process is stopped after iteration i for i ≥ 2, if

sign(Λ2,i
k ) = sign(Λ2,i−1

k ) ∀ k ∈ {1 . . .K}. (13)

CRC Rule (CRC). A separate error-detection code, such as a CRC,
can be concatenated as an outer code with an inner Turbo-Code in
order to flag erroneous decoded sequences. The decoding process is
stopped after iteration i whenever the syndrome of the CRC is zero.
The 16 bit CRC code used detects at least 99.9985 % of all frame
errors.

“Magic Genie” (M). For lower bounds on the required iterations,
we add an additional unrealizable stopping rule. For this rule,
the magic genie immediately recognizes the correct decoded word,
based on foreknowledge of the transmitted bit sequence, and stops
the iterative process in exactly the minimum number of iterations

required. If a datablock can not be decoded with the maximum
number of iterations, magic genie does not start any iteration at all.

To prevent an endless loop, if the stopping rules are never satisfied,
decoding is finally stopped after a maximum of 10 iterations. After
decoding has stopped (in any case), the final hard-decisions are
compared to the original bit sequence for Frame-error-rate (FER)
computation.

V. RESULTS

Frame-error-rate (FER) and average iterations were simulated with
a FDD-Downlink chain according to the UMTS standard [2]: 3GPP
TS 25.101 V5.3.0 (2002-06). It is implementing a complete wireless
communications environment. Some of the reference measurement
channels, representing example configurations of radio access bearers
for different data rates, were simulated as examples of a realistic
communications environment. In the following, we present results
based on a multi-path fading channel (Case 3, Test 12). This config-
uration simulates a 384 kbit/s data service with a blocklength of 3840
data-bits and additional 16 bit CRC, leading to a total blocklength of
3856 bit. Note, that similar results were achieved by simulation of an
Additive White Gaussian Noise (AWGN) channel model.

The communications performance of the M and the CRC criteria
is identical to a 10 iterations decoder in our simulations. In the
following, for the comparison of the communications performance we
therefore use a 10 iterations decoder as a reference. For comparison
of the average iterations, we calculate the normalized iterations in
relation to 10 iteration (= 100 %). The normalized iteration of the
M criterion is depicted as a lower bound. Finally, the computational
complexity of the stopping rules is compared.

A. Communications Performance

Our simulations confirm the iteration control criteria reported
in literature. The communications performance of all criteria (see
Figure 2) are nearly identical. Note, that Figure 2 only shows a subset
of the iteration control criteria: the communications performance of
CEθ=0.001, Minθ=7.75, and SDRθ=0.0001 is comparable to 10 iterations
in Figure 2; Combθ=7.75 and HDA is comparable to Sum in Figure 2.
Additionally, the requirements of the UMTS standard are depicted.

There is one exception to the results in literature: the Mean
criterion does not show the in [13], [14] described behavior, due
to our fixed-point Turbo-Decoder model. The LLR calculation is
implemented with a (7,2) quantization and saturation arithmetic.
Therefore, all LLRs are in the range from −16 to 15.75. This leads
to a mean value ranging from 15.75 to 16 even for perfectly decoded
datablocks, depending on the number of “0” and “1” in the original
bit sequence.

B. Average Iterations

The iteration control criteria presented in literature are able, as
expected, to reduce the average iterations for high SNR in our
simulation environment (see Figure 3). The average iterations of
CEθ=0.001, SCRθ=0.005, and HDA are nearly identical. Min shows
the best results for high SNR, as it requires on average only 1

2
iterations more than the M criterion. For low SNR, only the Sum
criterion based on the sum-reliability reduces the average iterations.
For high SNR, however, it needs an additional iteration than the other
iteration control criteria. Comb combines the advantages of Sum and
Min:for low SNR the sum-reliability detects with a high probability
undecodable datablocks within the first four iterations. For high SNR,
successful decoding is reliable detected by the minimum LLR.
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Criterion Addition Mult. Memory Impl. Complexity
CE 3K 3K 2K +LUT very high
Mean 2K 1 - low
Min 2K - - very low
SCR 2K 1 1K high
SDR 2K 1 - low
HDA 2K - 1K ·1bit medium
CRC 3K - - very low
Sum 2K - 1 very low
Comb 3K - 1 very low

TABLE I
COMPARISON OF IMPLEMENTATION COMPLEXITY OF STOPPING RULES,
WHERE K IS THE BLOCKLENGTH AND LUT A LOOKUP-TABLE FOR THE

VALUES OF 1
ex

In [10], for CE also a reduction of the required iterations for low
SNR is reported. It is argued, that Λs

k and Λp
k dominate the compu-

tation as Λa
k is usually small for low SNR. Therefore, the extrinsic

information should stabilize quickly, leading to a termination of the
decoding by the CE rule. However, in our simulations the extrinsic
information shows no convergence for most of the datablocks in a
low SNR region. The extrinsic information floats around zero and
does not stabilize over iterations, therefore the CE rule never stops
the decoding. We consider this as an effect of the limited accuracy
of our fixed-point model, due to quantization.

C. Implementation Complexity of Stopping Rules

We assume an efficient implementation in hardware or software,
i.e. a fixed-point implementation, where each component decoder
has only access to its input a priori information and its calculated
extrinsic information and LLR. Any further information required by
any stopping rule leads to additional memory demand.

We analyze the number of operations similar to an addition (addi-
tion, subtraction, increment, comparison, shift, XOR, minimum, and
absolute value), considering them as very low complexity operations.
More complex operation, such as multiplication or division, should be
avoided. If occurring only once per iteration, we consider them as low
complexity. Furthermore, we analyze the additional memory for the
storage of information between successive iterations. Storing a single
value is neglectable, if a block of values is required we consider this
as medium to high complexity, depending on the size of the memory.
The memory demand for intermediate values calculating the rules are
neglected.

Table I illustrates the implementation complexity and rates the
rules from “very low” to “very high” complexity. The most complex
iteration control criterion is CE followed by SCR and HDA as they
require additional memory. Min, SDR, Sum, and Comb have the
lowest implementation complexity.

CRC also has a low implementation complexity, especially in
hardware (a simple shift register). However, there are some imple-
mentation related problems. First, the CRC has to be computed after
the second component decoder, but MAP2 works on the interleaved
data sequence. As the CRC depends on the order of the input bits,
it can not be calculated on-the-fly during decoding but must be
calculated after deinterleaving. Second, CRC calculation is serial
by nature and therefore not suited for implementation in parallel
decoding architectures.

VI. CONCLUSION

The iteration control criteria Min, Sum, and SDR are best suited for
implementation, as they have a low complexity, reduce the average
iteration considerably with a low degradation in the communications
performance. Only the Sum criterion, based on the sum-reliability,

reduces the iteration over the complete SNR range. However, this
criterion requires more iterations for high SNR, otherwise it would
be ideal for iteration control. For high SNR, Min is best to reduce
the average iterations. Consequently, the combined criterion Comb
gives the best results of all iteration control criteria with minimal
implementation overhead.
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